问题背景
与数据库或者存储系统交互是所有应用软件都必不可少的功能之一,akka开发的系统也不例外。但akka特殊的地方在于,会尽可能的将所有的功能都设计成异步的,以避免Actor阻塞,然而无法避免IO这类的阻塞操作。我们往往会把IO消息发送给单独的Actor进行处理,避免业务主逻辑受到阻塞。
在处理IO消息时,有两种模式:批量和单条。批量是指一次性处理多个消息,这样可以减少与存储系统的交互,提高吞吐量,适合处理大量消息;单条是指一次只处理一条消息,与存储系统交互次数增多,但可以尽快的处理当前消息,这在消息比较少时非常有用。
但系统往往是复杂的,待处理的消息的分布并不集中,业务繁忙时,短时间内消息很多,此时批量处理可以增加吞吐量;业务闲暇时,消息零零散散,需要尽可能快的处理消息。一个优秀的系统需要能够识别并合适的处理这两种消息速率,用akka开发系统时,也需要拥有这种能力。
问题假设
记得以前数学老师讲课时,最喜欢也是最经常说的两个字就是“解、设”,就是在解决问题之前,总是会做一些假设。那么我们也做一些假设,以简化解决问题的难度,但这并不影响我们对原有问题的理解。现假设如下:
有一个actor接收其他actor发过来的消息,把它存入数据库:
1、数据量比较少时。数据单条处理,尽量快速的入库。2、数据量比较大时。数据需要批量处理,比如调用jdbc的batch操作,以提高吞吐量。
3、需要能够在不同消息速率之间自由切换。
基于以上的背景,这个actor该如何设计比较好呢?
解决思路
解决该问题有以下几点因素需要考虑:
如何计算消息速率。
如何判断消息速率过高或过低
批量、单条模式之间如何切换
基于akka解决问题(毕竟作者遇到这个问题就是在用akka开发软件的过程中)
计算消息速率
上面问题的关键点之一是如何判断当前的消息速率过高或过快,而计算速率的重要参数是时间,而在分布式场景下时间是一个不可忽视的因素。各个节点之间的时间有时无法做到完全一致,作者所在的公司就是这样。
计算时,时间有两种选择方式:1、选择消息本身的时间;
2、选择处理消息时,当前系统时间。两种选择方式各有优劣。第一种比较准确,毕竟计算速率的对象是消息,用消息的时间也最为准确,但这要求所有节点的时间保持同步,而且消息本身必须有一个时间字段;第二种准确度稍微差一点,毕竟收到消息与实际处理该消息会有一定的延时,可以处理任意类型的消息。
为了简化并解决问题,作者选择了消息本身的时间作为计算参数,所有的消息都有时间字段。切换计算模式
我们已经计算出了消息速率,那么是否就可以直接跟设定的阈值进行对比,判断当前的处理模式(批量或单条)了呢?这还不一定,要根据实际情况作出判断。消息速率的计算有两种计算方式:实时、固定速率。其中“固定速率”也有两种方式:固定消息个数、固定处理间隔。
计算的方法各有千秋。如果实时计算消息速率,可以及时的切换批量或单条模式,但在速率不稳定的情况下,会造成“抖动”的情况,即频繁的在两种模式之间进行切换,很可能造成批量处理的消息数量过少,降低吞吐量;固定速率计算,则可以缓和这种“抖动”,当然也就不能及时的切换批量或单条模式。
同样,为了简化问题,并考虑遇到问题的实际情况,作者选择用“固定速率”计算消息速率,计算方法如下:
1、 刚开始处于单条模式,保存当前时间(或第一条消息的时间)为StartTime
2、 单条模式下处理消息,并保存消息的当前时间问EndTime3、 计算当前的处理消息的个数,如果达到一个批量阈值,则计算此次批量时间跨度,即EndTime-StartTime。如果时间跨度大于批量时间的阈值,即此次批量处理的消息比较少,继续处于单条模式;如果时间跨度小于阈值,则表示在短时间内,收到了大量的消息,则切换为批量模式,计数器清零。
4、 批量模式开始时,保存第一条消息的时间为StartTime
5、 批量模式处理消息,并保存消息的当前时间问EndTime6、 计算当前的处理消息的个数,如果达到一个批量阈值,则返回“批量提交”消息,该消息作为特殊消息,提示处理程序提交当前批量。
7、 通过外部actor或者外部系统,给当前actor发送“批量心跳”消息,该消息主要为了弥补消息尾端的空白。即消息个数少于一个批量时,能够及时处理当前剩余消息。8、 收到“批量心跳”消息时,检查当前消息处理个数,如果小于一个批量阈值,则表示当前消息速率过低,退出批量模式;如果大于一个批量阈值,则计数器清零,保持批量模式。无论此时进入哪个模式,都会发送“批量提交”消息,以尽快提交当前批量。
demo代码
为了保持通用,此处设计了一个抽象类,封装了部分逻辑
TODO
demo代码还是有点简单,后期需要进一步的优化,例如该actor只能对某一类消息进行自动速率调整,无法适应多个不同类型消息的AutoDrive,欢迎大家进行讨论,提出各种优化方案。
本文摘自异步社区,发表人: gabry.wu ,作品未经授权,禁止转载。
推荐阅读
长按二维码,可以关注我们哟
每天与你分享IT好文。
在“异步图书”后台回复“关注”,即可免费获得2000门在线视频课程
点击阅读原文,查看更多内容